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Abstract 
 

The present study tested the hypothesis that verbal labels support category induction by 

providing compact hypotheses. 97 4-6-year-old children (M=63.2 months; 46 female, 51 male; 

77% White, 8% more than one race, 4% Asian, 3% Black; tested 2018) and 90 adults (M=20.1 

years; 70 female, 20 male) in the Midwestern United States learned novel categories with 

features that were easy (e.g., “red”) or difficult (e.g., “mauve”) to name. Adults (d = 1.06) and – 

to a lesser extent – children (d = 0.57; final training block) learned categories composed of more 

nameable features better. Children’s knowledge of difficult-to-name color words predicted their 

learning for categories with difficult-to-name features. Rule-based category learning may be 

supported by the emerging ability to form verbal hypotheses. 
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Nameability Supports Rule-based Category Learning in Children and Adults 

Learning abstract, rule-based categories is crucial to children’s development. Rule-based 

concepts lay the foundation for reasoning across virtually all aspects of human life, from 

knowing how to maneuver through the world on a daily basis (e.g., knowing to stop at a red light 

and to go at a green light) to engaging in abstract thought (e.g., learning that triangles are three-

sided objects). However, learning rule-based categories also represents a significant hurdle for 

children. Although five-year-old children can perform complex tasks that require abstraction, 

such as drawing recognizable common objects (Long et al., 2018, 2019) or engaging in complex 

pretend play (Lillard et al., 2013), even formally simple rule-based categories can often prove 

surprisingly difficult – though not impossible – for them to learn (Mathy et al., 2015; Minda et 

al., 2008; Rabi & Minda, 2014). In this paper, we explored one potential explanation for why 

children’s ability to learn abstract categories improves across development: their growing ability 

to generate and deploy verbal labels in the service of discovering novel categories. 

Children’s Learning of Abstract and Rule-based Categories 

Acquiring abstract concepts – concepts that require extracting general patterns from more 

concrete or specific motor and perceptual experiences – lays the foundation for cognitive 

development across many domains. One example is the development of reasoning about 

relational categories – categories defined by roles or properties connecting multiple entities 

(Christie & Gentner, 2014; Gentner, 2016). Basic relations such as the concepts of “same” and 

“different” have long been considered “the very keel and backbone of our thinking” (James, 

1890/1950, p. 459), laying the foundation for abstract, combinatorial thought. Relational 

categories play a central role in reasoning across a wide variety of areas, including spatial 

cognition (Gentner et al., 2013; Loewenstein & Gentner, 2005) and mathematical reasoning 
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(Singley & Bunge, 2014). Although recent evidence suggests that young children may have 

abilities to reason about relations such as same and different in certain contexts (Anderson et al., 

2018; Walker & Gopnik, 2014), reasoning about relational categories remains quite difficult for 

children into their preschool years (Christie & Gentner, 2014; Hochmann et al., 2017).  

Past research has also investigated the development of children’s ability to reason about 

categories that require learning a specific, usually abstract, category rule (Deng & Sloutsky, 

2016; Kloos & Sloutsky, 2008; Minda & Miles, 2010). These studies often find limited or mixed 

evidence for rule-based category learning in children. On one hand, children between the ages of 

3 and 8 can show adult-like category learning for rule-based categories when stimulus 

dimensions are transparent (e.g., successfully learning to group stimuli based on size as opposed 

to color) (Minda et al., 2008). On the other hand, children around the same ages often fail to 

show robust learning when the stimulus dimensions are more opaque or difficult to identify 

(Rabi & Minda, 2014), when participants are required to learn category rules that combine 

information from multiple dimensions (Mathy et al., 2015; Minda et al., 2008), or when they are 

required to suppress a prepotent response or flexibly shift between category rules (Munakata et 

al., 2012; Zelazo & Carlson, 2012). These contrasting findings raise a puzzle: why are some 

categories based on logically simple rules so difficult for children to learn? 

When encountering a novel category stimulus, a key task for any learner is identifying 

the dimensions that determine category membership, while learning to ignore task-irrelevant 

dimensions. On many theories of categorization and its development, such as COVIS (Ashby et 

al., 1998), children are thought to automatically represent task-relevant and task-irrelevant 

category dimensions, because the dimensions are considered perceptually basic (e.g., orientation 

and spatial frequency) (Huang-Pollock et al., 2011) or because children are explicitly taught the 
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category dimensions (Visser & Raijmakers, 2012). According to these approaches, the main 

developmental challenge in learning rule-based categories is that children often fail to focus their 

attention selectively on a single relevant category dimension while inhibiting irrelevant 

dimensions (Best et al., 2013; Munakata et al., 2012; Plebanek & Sloutsky, 2017). For example, 

children will fail to learn a single-dimensional category rule when a category-irrelevant feature 

has high variability (Huang-Pollock et al., 2011). Conversely, children sometimes outperform 

adults on tasks that require retaining information about category-irrelevant dimensions (Best et 

al., 2013; Deng & Sloutsky, 2016). However, the notion that learners are attending to specific 

category dimensions presupposes that they are successfully representing the dimension at hand. 

Crucially, not all dimensions are equally easy to represent or reason about (Kurtz et al., 2013), 

and the ability to represent relevant category dimensions undergoes a substantial learning process 

(Mash, 2006; Schyns et al., 1998; Schyns & Rodet, 1997). This raises the question of how 

children come to learn which dimensions to represent in the first place. 

Verbal Labels as Guides to Category Membership 

One tool that may aid in abstracting and generalizing relevant dimensions of categories is 

the use of verbal labels (Lupyan & Zettersten, 2021). Past research suggests that language is not 

simply a means for communicating about categories, but also can aid in constructing categories 

themselves (Carey, 2011; Gentner, 2016; Lupyan, 2016). Verbal labels influence the ability of 

children and adults to reason about exact number (Frank et al., 2008; Schneider et al., 2020), 

relational categories (Christie & Gentner, 2014), and spatial concepts (Casasola et al., 2009; 

Gentner et al., 2013; Miller et al., 2016). Among adult learners, many studies have noted the 

correlation between the learnability of a formal category rule and the simplicity with which it can 

be expressed in language (Kurtz et al., 2013; Shepard et al., 1961). Teaching names for novel 
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categories that are difficult to verbalize leads to improved category learning (Lupyan et al., 2007; 

Lupyan & Casasanto, 2015), suggesting a causal role for language. One reason that labels 

support category learning is that they aid in representing category-relevant dimensions (Lupyan 

& Zettersten, 2021; Perry & Lupyan, 2014). On this view, labels provide compact, easily 

accessible representations for reasoning about the dimensions of a novel stimulus.  

In a recent study, Zettersten & Lupyan (2020) found that the nameability of category 

features predicts category learning accuracy, controlling for category rule complexity and 

perceptual discriminability of category features. Participants were tasked with learning novel 

categories composed of colors or shapes and defined by simple one-dimensional rules (e.g., 

“images that have the color red belong to category A”). Despite the simplicity of the underlying 

rule, participants learned the novel categories more quickly and accurately when they were 

composed of features that were easy to name than when the features were harder to name (e.g., 

“images that have that yellow-greenish color belong to category A”). These findings suggest that 

the degree to which underlying category dimensions are easy to access verbally can substantially 

impact how quickly and easily adult learners identify novel categories. 

Verbal labels, such as words for specific color categories, could also play a role in how 

children approach novel categories. The availability of verbal labels has been shown to affect 

children’s success at abstract reasoning tasks. For example, 2-4-year-olds only succeeded in 

relational match-to-sample tasks when given training with labels that highlighted the relation 

(e.g., “same”) (Christie & Gentner, 2014). The availability of language describing spatial 

relations helps preschool children remember spatial locations and encode relative location in 

spatial reasoning tasks (Gentner et al., 2013; Miller et al., 2016; Simms & Gentner, 2019). A 

possible explanation for why verbal labels support children’s success on such tasks is that labels 
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help children focus on, represent, and remember features of the stimuli (i.e., “sameness” or a 

relative location such as “under the box”) that are difficult to conceptualize or are overridden by 

more salient perceptual information (Gentner & Christie, 2010; Overkott et al., 2023). 

Another commonly diagnostic category feature that undergoes substantial development in 

children’s knowledge are color categories. Color words are at least partially understood early in 

development (starting around 18 months of age; Forbes & Plunkett, 2018, 2019; Wagner, 

Jergens, & Barner, 2018), though children’s knowledge of color terms undergoes gradual, highly 

variable development over the first several years of life (Wagner et al., 2013; Yurovsky et al., 

2015). Even children as old as five years often struggle to name colors that lie outside 

prototypical shades (Saji et al., 2020). This wide variability in the accessibility and knowledge of 

color labels provides an opportunity to test the role of verbal labels in children’s rule-based 

category learning. If children use color labels to guide rule discovery in category learning, 

children’s ability to learn categories based on color features should vary based on their 

knowledge of labels for relevant category features.  

The Present Study 

Why are some logically simple rule-based categories so difficult for children to learn? In 

the present study, we tested whether language experience plays a role in explaining this 

developmental puzzle, by investigating whether children would learn novel categories better 

when they were composed of more nameable features and whether these benefits were similar in 

magnitude to those previously observed for adults. We presented children (4- to 6-year-olds) and 

adults with “color wheels” composed of three colors. Each color wheel belonged to one of two 

categories, as determined by a single color feature (see Figure 1A; Zettersten & Lupyan, 2020). 

Critically, the colors composing the color wheel were either highly nameable (High Nameability 
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condition) or more difficult to name (Low Nameability condition). In addition to testing 

participants’ category learning, we also collected information on their vocabulary and the extent 

to which they named the colors used in the task.  

In our investigation, we focused on children between the ages of four to six years of age 

because (1) past research has found that children at this age have substantial difficulty learning 

even simple category rules (Minda et al., 2008; Rabi & Minda, 2014) and (2) children at this age 

have been shown to benefit substantially from the availability of verbal labels (e.g., Christie & 

Gentner, 2014; Overkott et al., 2023). While we predicted that adults would be more likely than 

children to learn the underlying category rule, consistent with past category learning literature, 

the critical question was whether children would benefit from more nameable features that make 

it easier for them to represent and test verbal hypotheses about category membership. If children 

can also use their knowledge of verbal labels to guide rule-based category learning, children 

should show a benefit for learning categories composed of highly nameable dimensions, similar 

to the benefit of nameability found in adults. Moreover, given that children’s knowledge of color 

terms varies widely in this age range (Wagner et al., 2013; Yurovsky et al., 2015), individuals’ 

knowledge of relevant labels for category features should predict their category learning success. 

Children with better knowledge of difficult-to-name color features should find it easier to learn 

the underlying category rule, because having access to labels should make it easier for them to 

represent and test the discrete category features in the task.  

Methods 

Participants 

Adult Sample. Ninety students at a large public university in the Upper Midwest United 

States (mean age = 20.1 years, SD = 1.2; range: 18 – 23 years; 70 female, 20 male; 83 L1 
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English speakers; tested in 2018; demographic information on race and ethnicity was not 

collected) participated for course credit. Participants were randomly assigned to the High 

Nameability (n = 45) or the Low Nameability (n = 45) condition. A target sample of N = 90 was 

chosen based on a power analysis showing that a sample of this size gave us at least 80% power 

to detect an effect of d = 0.6 and larger. The effect size d = 0.6 was chosen based on the smallest 

effect observed in the previous experiments the task was modeled on (Zettersten & Lupyan, 

2020) and based on initial pilot data with children that was consistent with an effect of this size. 

The average completion time for the study was 7.9 minutes (SD = 0.68; Round 1 Training Phase: 

M = 3.4 mins; Round 2 Training Phase: M = 2.5 mins; Generalization Phase: M = 0.7 mins). 

Child Sample. Ninety-seven children in the Midwestern United States (mean age = 63.2 

months, SD = 7.0; range: 48 - 81 months; 46 female, 51 male; 77% White, 8% more than one 

race, 4% Asian, 3% Black, 7% did not disclose; 2% Hispanic or Latino; all L1 English speakers, 

7 bilingual; self-reported parental education: 51.5% postgraduate, 30.9% college graduate, 7.2% 

trade, technical, or vocational training, 5.2% some college, 5.2% no response; household income: 

$100,000 or more for 47.4% of families, $50,000 - $99,999 for 23.7%, less than $50,000 for 

7.2%, 21.6% preferred not to disclose or did not respond; tested in 2018) were recruited from a 

preschool database belonging to a child development laboratory at a large public university in the 

Upper Midwest. Sixteen additional participants were excluded due to technical issues (e.g., a 

browser issue while running the experiment; n = 5), experimenter error (e.g., an error in 

administering the experiment script; n = 5), the child not completing the experiment (n = 5), or 

the child not being fluent in English (n = 1). We did not collect information about color 

blindness, but all participants were highly accurate in identifying the highly nameable colors 

based on their canonical names (see Color Word Comprehension results). The final sample 
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includes slightly more participants than the original target sample of 90 participants, because we 

typically recruit additional participants to ensure that the target sample size is met after 

exclusions. The average completion time for the study was 12.1 minutes (SD = 2.76; Round 1 

Training Phase: M = 5.2 mins; Round 2 Training Phase: M = 4.0 mins; Generalization Phase: M 

= 1.1 mins). Children were given storybooks as compensation for participation. Participants were 

randomly assigned to the High Nameability (n = 49) or the Low Nameability (n = 48) condition. 

Stimuli & Design 

Stimulus Structure. Participants were presented with eight circular “color wheel” 

exemplars, each composed of 3 different colors (see Figure 1A), based on a design used in past 

category learning studies (Couchman et al., 2010; Zettersten & Lupyan, 2020). One of the colors 

was always 100% predictive of category membership. For example, in the High Nameability 

condition, stimuli containing a red segment always belonged to one category, while stimuli 

containing a brown segment always belonged to the other. The other two color features were 

correlated with category membership at 75%. Color pairs were tied to specific locations; for 

instance, the colors in the bottom segment of the circle were either blue or yellow in the High 

Nameability condition (see Table 1). The position of the 100% predictive color was always the 

upper-right segment. The stimulus containing the three colors that occurred most frequently with 

each category was termed the “prototype”. The two other training exemplars in each category 

differed from the prototype with respect to one of the two 75% predictive colors. During the 

generalization phase, participants were tested on the two prototype exemplars and two novel 

items, one belonging to each category. The novel stimuli (not viewed during the training phase) 

differed from the prototype with respect to both 75% predictive colors and were termed the 

“novel generalization exemplars” (see below for further information). 
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Color Nameability. The critical manipulation involved the nameability (Guest & Laar, 

2002) of the colors comprising each color wheel exemplar. The individual color features were 

selected based on a large-scale online study in which people were asked to name colors (Munroe, 

2010), using a procedure described in detail in a past study of the effects of nameability on 

category learning using the same color stimuli (Zettersten & Lupyan, 2020). We used Simpson’s 

diversity index D (Majid et al., 2018; Simpson, 1949) to quantify nameability. Simpson’s 

diversity index provides a measure of naming diversity that accounts for both type and frequency 

of labels generated for a stimulus (Majid et al., 2018). For a given stimulus, if speakers produce 

N description tokens, including R unique description types from 1 to R, each with frequencies of 

n1 to nR, then Simpson’s diversity index D is computed as 

 

This measure ranges from 0 to 1, with 0 indicating low nameability (all respondents gave unique 

labels, i.e., ni = 1 for all i) and 1 indicating high nameability (all respondents gave the same 

labels, i.e., i = 1 and ni = N). 

Color Selection. The specific color features of the stimuli in the present study matched 

those used in a past study testing the effect of feature nameability on category learning in adults 

(Zettersten & Lupyan, 2020: Exp 1B). In this study, 6 colors with high nameability and 6 colors 

with low nameability were selected such that (a) each color pair was clearly discriminable from 

the other and (b) the resulting prototypes had approximately equal between-color perceptual 

discriminability. In the Supplementary Materials (section S1), we describe the methods and 

metrics used to compute discriminability and the stimulus selection procedure from Zettersten & 

Lupyan (2020) in further detail.  
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Figure 1. (A) Experimental stimuli and category structure in the training phase. (B) Task design. 
Participants were asked which alien would like to eat the “snack” (color wheel) and were 
provided feedback after their selection. The progress bar depicts the number of “snacks” (trials) 
remaining. 
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Table 1 
Overview of the color feature set 

RGB Color Assigned 
Name 

Modal 
Name Nameability Modal 

Agreement 
Simpson’s 
Diversity Role 

(30, 90, 210) 
 

blue blue high 80.3% .671 75% predictive 

(250, 120, 30) 
 

orange orange high 85.1% .733 75% predictive 

(220, 20, 0) 
 

red red high 82.7% .697 100% 
predictive 

(250, 240, 0) 
 

yellow yellow high 81.7% .664 75% predictive 

(120, 80, 40) 

 

brown brown high 81.8% .648 100% 
predictive 

(130, 30, 180) 

 

purple purple high 82.1% .672 75% predictive 

(170,160,40) 

 

chartreuse mustard low 6.9% .056 100% 
predictive 

(200, 170, 170) 

 

mauve grey low 6.8% .054 100% 
predictive 

(200, 100, 70) 
 

sienna brown low 8.7% .051 75% predictive 

(70, 100, 90) 

 

teal grey green low 9.8% .128 75% predictive 

(220, 240, 150) 

 

honeydew pale green low 5.3% .079 75% predictive 

(150, 200, 180) 
 

turquoise green low 6.0% .084 75% predictive 

Note. Modal names and nameability values (modal agreement and Simpson’s diversity index) were 
computed based on a large-scale online color naming study (Munroe, 2010). 
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Color Norming Task. To ensure that high and low nameability colors were similarly 

perceptually discriminable, Zettersten and Lupyan (2020) used CIE-LAB distances between 

color pairs to quantify discriminability during feature selection, and also collected behavioral 

discriminability norms from adult participants for the color features used in the current 

experiment. The behavioral norming data found broadly comparable reaction times for high and 

low nameability colors in a speeded same-different judgment task (though high nameability 

colors were discriminated slightly faster on same trials). However, it was not clear that these 

norms would be representative of children’s perceptual discriminability judgments. To obtain a 

behavioral measure of the discriminability of the color features among children in the current age 

range, we conducted a norming study in which we asked a separate sample of 3-6-year-old 

children, as well as a separate sample of adults, to make judgments about color pairs in a speeded 

match-to-sample task (Zettersten et al., 2020). 40 3-6-year-old children in the Midwestern United 

States (mean age = 56.4 months, SD = 6.5; range: 45 - 69 months; 16 female, 22 male, 2 not 

reported; 87.5% White, 5% more than one race, 5% Asian, 2.5% did not disclose; tested in 2023) 

participated in the task. Data from 5 additional children were excluded due to random responding 

(3), for being outside of the targeted age range (1), or for being diagnosed with a developmental 

disorder (1).We also collected data from a separate sample of 50 adult students at a large public 

university in the Upper Midwest United States (mean age = 19.8  years, SD = 1.2; 48 female, 2 

male) using the same task, to obtain a set of perceptual discriminability norms for both children 

and adults collected under similar conditions.  

 The task was conducted on a tablet in a quiet room. In the task, one round color swatch 

appeared at the top of the screen (the standard; see Figure S1 in the Supplementary Materials). 

Two round color swatches appeared below the standard, one the same color as the standard (the 
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target) and one a different color from the standard (the foil). Participants were asked to find 

which of the two lower pictures matched the top picture as quickly and accurately as possible. 

The color stimuli were the 6 high nameability and the 6 low nameability colors from the main 

experiment. High nameability colors were paired only with high nameability colors, and low 

nameability colors were paired only with low nameability colors, because the manipulation of 

color nameability in the main experiment was between-subjects (i.e., participants in the main 

experiment only ever saw high nameability colors or low nameability colors, but not both). Each 

color pair was tested twice per participant, resulting in 30 high nameability trials and 30 low 

nameability trials per participant. 

 Overall, there was no evidence for differences in discriminability between low- and high-

nameability colors (for a walkthrough of all analyses, see: https://rpubs.com/zcm/color-rule-kid-

norming). Accuracy was high across the board both for children (High Nameability Colors: 

96.2%, 95% CI = [94.4%, 98.0%]; Low Nameability Colors: 96.9%, 95% CI = [95.7%, 98.0%]) 

and for adults (High Nameability Colors: 99.7%, 95% CI = [99.3%, 100%]; Low Nameability 

Colors: 99.7%, 95% CI = [99.1%, 100%]). Average reaction times were similar between high 

nameability and low nameability colors both for children (High: M = 1998 ms, 95% CI = [1924 

ms, 2072 ms]; Low: M = 2026 ms, 95% CI = [1981 ms, 2071 ms], t(8.25) = .43, null model 

somewhat favored over the alternative model BF01 = 2.27) and for adults (High: M = 697 ms, 

95% CI = [684 ms, 711 ms]; Low: M = 708 ms, 95% CI = [695 ms, 721 ms], t(10) = -1.44, null 

model slightly favored over the alternative model BF01 = 1.69). We also fit a linear mixed-effects 

model predicting children’s trial-by-trial reaction times from the interaction between condition 

and age, including by-participant random effects for subject (intercept and condition slope) and 

color pair. While reaction times decreased with age, b = -25.2, t(37.79) = -2.24, p = .03, there 
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was no significant interaction between age and color nameability, b = -1.7, t(1223) = -0.27, p = 

.79, i.e., there was no evidence of a change in the (lack of) nameability effect across age. At the 

same time, both children’s (r = -.47, p = .01) and adults’ (r = -39, p = .03) average reaction times 

for color pairs were correlated with ΔE2000 distances between colors.  

Procedure 

Stimulus Presentation. The stimuli were presented in a web-browser on a Samsung 

tablet computer [Samsung Galaxy Tab S3 with screen dimensions of 23.6 x 17.0 cm]. The task 

was coded using the jsPsych library (de Leeuw, 2015). The experiment code and stimuli are 

available on the project’s OSF page (https://osf.io/3y4ck/). 

Warm-up Phase. The task was administered in exactly the same manner with child and 

adult participants. A trained researcher guided participants through the web-based task, 

providing short instructions on how to play the game and prompting responses as necessary. The 

experiment began with a short warm-up phase to familiarize participants with the structure of the 

task. During the warm-up phase, cartoon images of a cat and a dog appeared on either side of the 

screen. Next, 4 images of two types of “snacks” appeared one-by-one in the center of the screen. 

The two snack types were images of bones (the “snacks” that the dog character preferred) and 

fish (the “snacks” that the cat character preferred). Participants were instructed to “touch the 

tummy of the animal that you think likes to eat the snack in the middle.” Participants received 

both auditory and visual feedback after each trial indicating whether a response was correct or 

incorrect. After correct responses, a positive “ta-da” sound was played while the character 

jumped up and down. After incorrect responses, a short “buzz” sound played while the stimulus 

moved back to the central location, and children were then instructed to “feed the snack” to an 
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animal again. All images, including the dog and cat, were presented in grayscale to ensure that 

participants were not biased to any particular color during the familiarization phase.  

Training Phase. Next, participants proceeded to the training phase. Two alien characters 

appeared on either side of the screen (see Figure 1B), together with a progress bar that allowed 

participants to track the number of remaining trials. The researcher then explained the task to 

participants using the following script: 

In this game, you’re going to meet two different aliens who like different kinds of 

alien snack. This alien [pointing to alien on the left] is a Modi. Modis like one kind 

of alien snack. This alien [pointing to alien on the right] is a Gazzer. Gazzers like a 

different kind of alien snack. Now, you have to figure out what kind of alien snack 

Modis like and what kind of alien snack Gazzers like. You’re going to see two 

different kinds of alien snack; one kind of snack that Modis like and one kind of 

snack that Gazzers like. Each alien eats only one of the two snacks, and it’s your 

job to learn which snack to feed each alien. When you see an alien snack in the 

middle, touch the tummy of the alien that you think likes to eat that kind of snack. 

If the alien likes that kind of snack, then it will jump up and down. If the alien 

doesn’t like that kind of snack, then the snack will go back to the middle and you 

get to decide where it goes again.  

Participants subsequently sorted the color wheels one-by-one to one of the two alien characters 

by tapping the “stomach” of the alien character (Figure 1B). Participants completed two rounds 

of 24 training trials. The 24 training trials in each round were grouped into three blocks of 8 

training trials each. On each block, participants sorted the prototype exemplar (the top image in 

Figure 1A) of each category twice, and the remaining two training exemplars of each category 
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once. The order of the stimuli was randomized within each block. Participants received 

immediate feedback as in the warm-up phase. After correct responses, in addition to positive 

auditory feedback and the target character jumping up and down, the target alien’s body also 

changed colors to match the category stimulus features, cycling through each color feature in 

turn (i.e., if the stimulus was composed of the color features brown, yellow, and orange, the 

alien’s body changed to brown, yellow, and orange as it jumped up and down). Trials were 

repeated until participants responded correctly, to ensure that children understood the category 

learning task and to incentivize correct responding. Only participants’ first response on each trial 

was included in subsequent analyses (i.e., repeated responses after incorrect choices were 

excluded). Correct locations (left or right) for each stimulus were counterbalanced across 

participants. 

After completing the first round of 24 training trials, participants were given a short break 

and the original instructions were repeated. Participants were not given any indication that the 

game was a repetition of the task they had just completed. Instead, the task was presented to 

participants as if they were starting a new game. They then began a second round of 

experimental trials. The second round proceeded exactly as the first experimental round, with the 

same experimental design and procedure. We repeated the training in a second round to help 

ensure that children received enough experience to be able to induce a category rule, since 

previous research suggests that children often struggle to learn rule-based categories (Rabi et al., 

2015). 

Generalization Phase. After the Training Phase, participants completed a short 

Generalization Phase, consisting of 8 trials. The goal of the Generalization Phase was to gather 

exploratory information about differences in the strategies that participants used to solve the 
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category learning task. However, we did not predict a priori for there to be overall differences in 

generalization accuracy between the high and low nameability condition, due to previously 

observed patterns of variability in adults’ categorization strategies in both the high and low 

nameability conditions (see S5 in the Supplementary Materials for further discussion).  

The generalization trials included four items, presented twice each in random order: the 

(previously seen) two prototypes of each category and two novel generalization items not seen 

during training (Figure 1A). The two novel generalization items differed on both of the 75% 

predictive color features from the prototype (i.e., only the 100% predictive color was shared with 

other category members). The novel items were designed to explore whether participants learned 

a single-feature rule as opposed to a multiple-feature category rule, following the design 

developed in Couchman et al. (2010). Note that the “correct” rule remains ambiguous from the 

perspective of the learner: a rule based only on the two 100% predictive colors and a strategy 

that uses a combination of color features (e.g., a two-out-of-three rule such as “the item belongs 

to category A if at least two out of the three colors red, blue, and purple are present”) are equally 

predictive of category membership during the category learning phase. Participants’ sorting 

behavior on the novel items can reveal if a learner is using a consistent strategy and, if so, 

disambiguate what strategy they are using: if a learner consistently uses only the 100% predictive 

category features (i.e., in the high nameability condition, the colors red and brown), they will 

consistently sort the novel items “correctly”, i.e. according to the single-dimensional category 

rule. However, if they consistently use combinations of category features, they will tend to sort 

the novel items “incorrectly” (e.g., the two-out-of-three rule above would systematically lead to 

the “incorrect” classification of the novel generalization exemplars). If participants do not 

consistently sort the novel items correctly or incorrectly, this suggests that they may not have 
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learned one single rule or strategy for determining category membership. The procedure for the 

generalization trials mirrored that for training trials, with two key differences: the generalization 

trials had no accuracy feedback and trials did not repeat after an incorrect response.  

Vocabulary and Color Word Knowledge Test. At the end of the category learning task, 

we presented participants with a series of short tests to assess their verbal knowledge and, in 

particular, their knowledge of verbal labels for the color features used in the experiment. 

Immediately after completing the test trials, participants completed a color naming test, a color 

word comprehension test, and a 12-item general vocabulary test. The color naming task was 

always presented first. The order of the two subsequent comprehension tasks was 

counterbalanced across participants. 

Color Naming. In the color naming task, participants were asked to name the 6 high-

nameability colors (displayed on the same tablet computer screen) followed by the 6 low-

nameability colors (displayed on a subsequent screen). On a given naming trial, the experimenter 

pointed to each color on the screen in turn and prompted the participant to name the color, while 

recording verbal responses. We began the naming task with the high nameability colors because 

we expected children would have considerable difficulty with the low nameability colors and 

might become confused if asked to name these colors first. By always presenting the (easier) 

high nameability colors first, we hoped to reduce the likelihood that children would fail to 

understand the task. 

Color Word Comprehension. Participants’ comprehension of words for each color was 

assessed using a 6-alternative forced-choice task. For each color, participants were shown all six 

colors belonging to a given nameability condition, presented side-by-side in a 2-by-3 array on 

the screen (as in the color naming task). Participants were then prompted to select a given color 
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with the question “Can you point to [color name]?”. Participants’ responses were recorded as 

correct or incorrect by the experimenter. The position of each color on the screen was 

randomized from trial to trial. The six high nameability colors were tested first in a fixed 

(random) order, followed by the six low nameability colors in a fixed (random) order. 

For the high nameability colors, the six color words tested corresponded to the six names 

that are typically used by English speakers when referring to these colors (blue, orange, yellow, 

red, brown, purple; see Table 1). For the low nameability colors, the most appropriate color 

name was — by definition — more difficult to determine. For example, the modal names 

generated by participants in the large-scale norming survey (Munroe, 2010) are often poor 

descriptors of their respective colors (e.g., “grey” was the most frequent name for RGB=(200, 

170, 170)). To select target labels for each of the six low nameability colors, we used the RGB 

values of the selected colors to search color databases across the internet and selected high-

frequency labels for the exact or similar RGB value. Labels were rejected that implied a semantic 

association with a familiar object (e.g., “olive”) or that contained a high-nameability color within 

the label (e.g., “light green”). 

Short Vocabulary Measure. In order to obtain a brief measure of children’s vocabulary, 

we selected 12 items from the Peabody Picture Vocabulary Test (PPVT-IV) (Dunn & Dunn, 

2007). The items were selected to range from easy items (e.g., cookie) to more difficult items 

(e.g., mammal) by taking two trials at random from each age band of the PPVT. The final PPVT-

IV test items were (in order) cookie, belt, fence, farm, calendar, dentist, axe, timer, athlete, 

hydrant, tusk, mammal. 
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Results 

The data and scripts documenting the data analysis for all experiments are openly available on 

the Open Science Framework (https://osf.io/3y4ck/). A walkthrough of all analyses reported in 

the manuscript, including additional modeling information and analyses reported in the 

Supplementary Materials, is accessible through a web browser at the following link: 

https://rpubs.com/zcm/color-rule-kid. 

Category Learning: Training Phase 

Adults. In our main confirmatory analyses investigating the effect of nameability on 

category learning, we predicted participants’ trial-by-trial accuracy on training trials from 

Condition (centered; Low Nameability = -0.5, High Nameability = 0.5), Block Number 

(centered) and Experiment Round (centered), and all interactions between the three predictors in 

a logistic mixed-effects model (Baayen et al., 2008; Jaeger, 2008). We used the lme4 package 

version 1.1-31 in R (version 4.2.2) to fit all models (Bates et al., 2015; R Development Core 

Team, 2022). We fit the model with the maximal by-subject random effects structure, including a 

by-subject intercept and a by-subject random slopes for Block Number, Experiment Round, and 

their interaction (Barr et al., 2013).  

Table 2 summarizes the coefficients estimated by the model. We highlight four main 

results. First, participants showed high overall accuracy and performed well above chance in the 

experiment, as indicated by the intercept term being significantly greater than chance level, b = 

3.58, 95% Wald CI = [3.14, 4.02], z = 15.88, p < .001 (chance = 0.5; note that logit(0.5) = 0, 

hence no offset term is needed to test against chance level). Second, critically, participants in the 

High Nameability condition (M = 95.8%, 95% CI = [94.7%, 97.0%]) were more accurate than 

participants in the Low Nameability Condition (M = 87.3%, 95% CI = [84.1%, 90.5%]), b = 
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1.68, 95% Wald CI = [0.96, 2.39], z = 4.61, p < .001 (Figure 2). Third, participants’ accuracy 

increased both across blocks (b = 1.26, 95% Wald CI = [0.87, 1.66], z = 6.23, p < .001) and from 

round 1 to round 2 (b = 1.26, 95% Wald CI = [.63, 1.88], z = 3.94, p < .001), providing further 

evidence that participants learned the categories as the experiment unfolded. Finally, there was a 

condition-by-block-number interaction, suggesting that participants’ accuracy increased more 

rapidly in the High Nameability condition than in the Low Nameability condition, b = 0.56, 95% 

Wald CI = [.03, 1.08], z = 2.08, p = .038. No other interactions were significant. 

 

Figure 2. Adults’ performance on the category learning task in the High Nameability condition 
(solid line) and Low Nameability condition (dashed line) during the two rounds of training. 
Horizontal dashed line indicates chance-level responding. Error bars represent ±1 SE of the 
within-subject corrected mean (Morey, 2008). 
 
Table 2. 
Estimates for the logistic mixed-effects model predicting training accuracy for adults 
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Coefficient Estimate SE z p 

Intercept 3.58 0.23 15.88 < .001 

Condition 1.68 0.36 4.61 < .001 

Block Number 1.26 0.20 6.23 < .001 

Round 1.26 0.32 3.94 < .001 

Condition * Block Number 0.56 0.27 2.08 0.0378 

Condition * Round 0.37 0.40 0.92 0.3565 

Block Number * Round -0.23 0.36 -0.64 0.5207 

Condition * Block Number * Round -0.18 0.45 -0.40 0.6932 

 

Children. We conducted the same confirmatory test to investigate category learning 

during the training phase for children (see Table 3). Children’s performance was significantly 

above chance, b = .94, 95% Wald CI = [.76, 1.11], z = 10.40, p < .001. As with adult 

participants, children’s accuracy improved across blocks (b = .12, 95% Wald CI = [.03, .22], z = 

2.55, p = .011) and from round 1 to round 2 (b = .46, 95% Wald CI = [.27, .65], z = 4.70, p < 

.001), providing further evidence that children were learning the categories as the experiment 

progressed.  

Performance of children in the High Nameability condition (M = 71.0%, 95% CI = 

[67.2%, 74.8%]) was not significantly more accurate overall than children in the Low 

Nameability Condition (M = 65.9%, 95% CI = [61.6%, 70.3%]), b = 0.28, 95% Wald CI = [-

0.07, 0.63], z = 1.56, p = .118 (Figure 3). However, there was a significant condition-by-block-

number interaction, suggesting that participants in the High Nameability condition showed faster 

category learning, b = 0.23, 95% Wald CI = [0.06, 0.41], z = 2.58, p = .010. Follow-up analyses 

suggested that this difference was due to participants in the High Nameability condition 

achieving higher accuracy compared to the Low Nameability condition in the final block (block 
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3) of round 1 (High: M = 74.2%, 95% CI = [69.9%, 78.6%]; Low: M = 63.3%, 95% CI = 

[58.6%, 67.9%]; b = 0.55, 95% Wald CI = [0.15, 0.95], z = 2.69, p = .007) and round 2 (High: M 

= 75.8%, 95% CI = [71.2%, 80.3%]; Low: M = 66.1%, 95% CI = [62.0%, 70.3%]; b = 0.53, 95% 

Wald CI = [0.07, 0.98], z = 2.29, p = .022). There was also a significant interaction between 

block number and round, suggesting that children’s learning increased more slowly in round 2 

compared to round 1 (i.e., children’s learning plateaued), b = -0.26, 95% Wald CI = [-0.44, -

0.07], z = -2.70, p = .007.  

Table 3 
Estimates for the logistic mixed-effects model predicting training accuracy for children 

Coefficient Estimate SE z p 

Intercept 0.94 0.09 10.40 <0.001 

Condition 0.28 0.18 1.56 0.1181 

Block Number 0.12 0.05 2.55 0.0109 

Round 0.46 0.10 4.70 <0.001 

Condition * Block Number 0.23 0.09 2.58 0.0099 

Condition * Round 0.07 0.18 0.36 0.7210 

Block Number * Round -0.26 0.09 -2.70 0.0069 

Condition * Block Number * Round -0.12 0.17 -0.68 0.4956 

 

To explore whether these effects whether moderated by child age, we fit the same model 

while adding age (centered), as well as its interaction with all other predictors. There was a 

significant main effect of Age on children’s category learning accuracy, b = 0.04, z = 3.34, p < 

.001. However, age did not moderate the effect of any of the model’s predictors, and all of the 

patterns of significance, including the key Condition by Block Number interaction, remained 

identical when controlling for age (see Supplementary Materials, S3.2, for details).  
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Figure 3. Children’s performance on the category learning task during the two rounds of 
training. Dashed line indicates chance level responding. Error bars represent ±1 SE of the within-
subject corrected mean (Morey, 2008). 
 

Comparing Children and Adults. We tested for differences between children and adults 

by fitting the same model as that described above across the entire dataset, while including age 

group as a predictor along with all interactions with the other three predictors: condition, block 

number and experiment round. We summarize the main results below by focusing on the effects 

of age group and its interaction with other predictors (see Supplementary Materials, section S3.1 

for full model results). 

 Adults were more accurate overall than children, b = 2.32, 95% Wald CI = [1.98, 2.67], z 

= 13.18, p < .001, and their accuracy increased more rapidly across both blocks (b = 0.78, 95% 
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Wald CI = [0.54, 1.03], z = 6.37, p < .001) and rounds (b = .68, 95% Wald CI = [0.24, 1.11], z = 

3.04, p = .002). Crucially, the overall effect of condition was greater for adults compared to 

children, b = 1.28, 95% Wald CI = [0.61, 1.96], z = 3.73, p < .001. However, the condition-by-

block-number interaction (significant for both adult and child participants considered separately, 

see above) did not differ significantly between children and adults, b = 0.28, 95% Wald CI = [-

0.18, 0.74], z = 1.19, p = .24, indicating no evidence for a difference between children and adults 

in how the accuracy increase across blocks depended on condition. 

Category Learning: Generalization Phase 

Adults. We additionally explored the degree to which nameability influenced 

participants’ performance in the Generalization Phase. Participants were near ceiling in 

categorizing the prototype stimulus in both nameability conditions (High: M = 100%; Low: M = 

97.8%, 95% CI = [95.1%, 100%]). Participants sorted the novel items in accordance with a 

single-color feature rule at similar levels in both conditions (High: M = 69.4%, 95% CI = 

[56.3%, 82.6%]; Low: M = 74.4%, 95% CI = [63.0%, 85.9%]). To test for condition differences, 

we fit a logistic mixed-effects model predicting trial-by-trial accuracy from condition (centered) 

while controlling for stimulus type (centered). We included a by-subject random intercept and a 

by-subject random slope for stimulus type. There was no significant difference between 

conditions, b = .15, 95% Wald CI = [-2.44, 2.75], z = 0.12, p = .91.  

Children. Participants categorized the prototype stimulus in both nameability conditions 

at similar rates (High: M = 69.4%, 95% CI = [60.8%, 78.0%]; Low: M = 65.6%, 95% CI = 

[56.8%, 74.4%]; Figure S7B). Participants also sorted the novel generalization exemplars in line 

with a single-color feature rule at a similar rate in both conditions (High: M = 62.2%, 95% CI = 
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[52.1%, 72.4%]; Low: M = 57.8%, 95% CI = [48.7%, 66.9%]). There was no significant effect of 

condition, b = .24, 95% Wald CI = [-.24, .71], z = 0.97, p = .33.  

Comparing Children and Adults. Finally, we tested for differences between children 

and adults by fitting a logistic mixed-effects model predicting trial-by-trial accuracy from 

condition, stimulus type, age group (centered; children vs. adults) and the 2-way interactions 

between condition and age group as well as stimulus type and age group. We included a by-

subject random intercept and a by-subject random slope for stimulus type. There was a 

significant effect of age group, revealing that adults were more accurate than child participants, b 

= 2.84, 95% Wald CI = [2.07, 3.61], z = 7.24, p < .001. Participants also performed better on the 

prototype stimuli than on the novel stimuli overall, b = 1.55, 95% Wald CI = [0.70, 2.41], z = 

3.55, p < .001. However, this effect was strongly moderated by age, such that the difference 

between prototype and novel stimulus accuracy was far greater for adult participants compared 

to child participants, b = 2.74, 95% Wald CI = [1.18, 4.30], z = 3.44, p < .001. Neither the effect 

of condition nor the condition-by-age group interaction term was significant (ps > .39; see S5 in 

the Supplementary Materials for additional analyses).  

Color Word and Vocabulary Knowledge  

Color Naming. As expected, colors from the High Nameability condition were easier to 

name as measured by Simpson’s diversity index of naming responses both among adults (High 

Nameability colors: M = 1.00; Low Nameability colors: M = 0.20, 95% CI = [0.12, 0.28]; t(10) = 

25.21, p < .001) and among children (High Nameability colors: M = 0.96; Low Nameability 

colors: M = 0.24, 95% CI = [0.12, 0.35]; t(10) = 14.59, p < .001; see Table S5 in the 

Supplementary Materials). Nameability did not differ between children and adults, either for 

highly nameable colors (t(5) = 1.49, p = .20) or for more difficult-to-name colors (t(5) = -1.17, p 
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= .29). The low nameability colors with the highest (chartreuse, turquoise, honeydew) and lowest 

(sienna, mauve, teal) naming consistency were similar for children and adults. 

Color Comprehension. All adults performed perfectly at identifying the 6 highly 

nameable colors (M = 100%; Table S5). Adults were far less accurate in correctly selecting the 6 

low nameability colors, identifying roughly half of the colors correctly on average (M = 49.6%; 

95% CI = [44.8%, 54.5%]), t(89) = 20.75, p < .001 (chance performance is 16.7%). Likewise, 

almost all children performed perfectly at identifying the 6 highly nameable colors (M = 99.7%; 

one child selected 4 out of 6 colors correctly). However, children were much less accurate in 

correctly selecting the 6 low nameability colors (M = 26.1%; 95% CI = [22.5%, 29.8%]), paired 

t-test t(96) = 39.62, p < .001, though children were still above chance among the low nameability 

colors overall, t(96) = 5.13, p < .001. 

Vocabulary Test. Performance on the vocabulary test did not differ for participants 

assigned to the High Nameability condition vs. the Low Nameability condition, both among 

adults (t(88) = 0, p = 1) and among children (t(95) = -0.21, p = .83). On average, children (M = 

77.8%, 95% CI = [75.2%, 80.5%]) scored lower on the vocabulary test than adults (M = 98.0%, 

95% CI = [96.9%, 99.0%]), t(185) = 13.70, p < .001. 

Relation between Category Learning and Color Word Knowledge 

Color Comprehension and Category Learning. Because word knowledge for high 

nameability colors had little to no variability, we did not fit any models testing the predictiveness 

of knowledge of high nameability color words. To investigate whether variability in participants’ 

knowledge of low nameability color words predicted category learning accuracy, we conducted 

an exploratory analysis in which we fit a linear model, separately for adults and for children, 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 29 

predicting overall category learning accuracy from low nameability color comprehension, 

condition (centered; high=0.5, low=-0.5), and their interaction.  

 

Figure 4. Relation between low nameability color word knowledge and categorization accuracy 
for adults and children in the High vs. Low Nameability condition. 

 

Adults. There was no interaction between condition and color comprehension (b = -0.03, 

t(86) = -0.45, p = .65) and no overall effect of low nameability color word knowledge on 

category learning (b = 0.04, t(86)  = 0.93, p = .35; Figure 4).  

 Children. We found a significant interaction between low nameability color 

comprehension score and condition, b = -0.06, 95% CI = [-0.11, -0.01,], t(93) = -2.21, p = .03, 

indicating that the effect of children’s knowledge of low nameability color words on category 

learning differed across the two conditions (Figure 4). Higher word knowledge for low 
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nameability colors predicted better category learning performance in the low nameability 

condition (i.e., the condition with features composed of low nameability colors), b = .05, 95% CI 

= [.01, .08], t(93) = 2.66, p = .009, while low nameability color word knowledge did not predict 

category learning accuracy in the high nameability condition (p = .54). The interaction between 

low nameability color word knowledge and category learning accuracy remained significant 

when including age (as well as its interactions with other predictors) and controlling for overall 

vocabulary score in the model (t(93) = -1.99, p = 0.0499), and the interaction effect was not 

moderated by age (p = .33; see Supplementary Materials S4.1. for details). 

Discussion 

When faced with the task of abstracting novel category rules, both adults and children 

benefited from more nameable category features. In the present work, we found that one factor 

that helps both child and adult learners in generating and testing hypotheses about novel 

categories is the verbal accessibility of category dimensions. We replicated previous work 

demonstrating that adults learn better when categories are composed of more nameable features 

(Zettersten & Lupyan, 2020) and extended this result to 4-6-year-olds. Consistent with past work 

on the development of category learning (Mathy et al., 2015; Rabi et al., 2015), children 

exhibited low overall accuracy in categorizing stimuli organized by a simple one-dimensional 

rule, but had greater success during training when category features were more nameable. 

However, the degree to which nameability supported learning differed between the two age 

groups: adults showed larger benefits from more nameable category features (and showed 

substantially better accuracy in general) than children. For children, a learning boost from more 

nameable category features emerged only during the final training blocks of a given round. The 

effect of nameability was also specific to the Training Phase for both children and adults, with no 
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differences in performance during the Generalization Phase. Why did we find that nameable 

features support learning new categories during training? We explore several possible 

explanations in the sections that follow. 

Why are Categories with More Nameable Features Easier to Learn? 

Verbal Hypothesis-Testing. One explanation for the current findings is that labels may 

be particularly powerful, compact representations of hypotheses about to-be-learned structures 

(Clark, 1998; Gentner, 2016; Lupyan & Zettersten, 2021). These compact representations (e.g., 

“alien A likes to eat red things”) make it easier for learners to formulate hypotheses about 

category rules (“it is about the red segment” vs. “it is about that pinkish-purplish segment”). 

Without these accessible, compact representations, learners may find it more difficult to 

formulate consistent hypotheses about category membership. In support of the notion that verbal 

labels play a causal role in our findings, we found that children had greater success in the low 

nameability condition when they had better vocabulary knowledge of the difficult-to-name color 

features. When children could more easily access labels for category-relevant dimensions, they 

were more likely to accurately learn about the novel category. Crucially, better vocabulary 

knowledge for low nameability colors did not predict better category learning for children in the 

high nameability condition; the effect of color feature vocabulary was specific to the category 

dimensions that a learner needed to generate hypotheses about. These findings are consistent 

with previous work demonstrating the causal role of verbal labels in children’s abstract reasoning 

(Christie & Gentner, 2014; Loewenstein & Gentner, 2005) and extend past results to the 

discovery of rule-based category features. They also have implications for models of category 

learning development by suggesting that experience-based differences in the ease of representing 

critical category dimensions modulates how easily children can learn rule-based categories.  
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Color vocabulary knowledge was not a perfect predictor of category accuracy. Although 

virtually all children demonstrated (unsurprisingly) robust knowledge of all of the relevant color 

terms for category dimensions in the high nameability condition, participants still showed only 

modest success at learning the novel category (~70% training accuracy, despite needing to learn 

how to categorize only six novel stimuli following 48 training trials with explicit feedback), 

especially when compared to the learning accuracy of adults on the same task (~95% training 

accuracy). Thus, verbal accessibility alone cannot explain the differences in category learning 

achieved by children (compared to the adult participants). We consider possible explanations for 

these differences in a later section. 

Non-Verbal Explanations. An alternative explanation for the benefits of more nameable 

category features is that another experiential factor, correlated with nameability, helps 

participants discover the novel category structure. One possibility is that more nameable color 

features are also features that participants are more familiar with (e.g., because they have 

encountered them more frequently in the past), and this familiarity allows them to posit 

hypotheses about category membership more easily. A second possibility is that more nameable 

colors are also more meaningful, in the sense that they are more strongly associated with the 

learners’ existing knowledge. Because we did not causally manipulate participants’ experience 

with the underlying color features, the present study cannot rule out these alternative 

explanations. However, the relation between factors such as familiarity and nameability is less 

straightforward than it might appear: for example, attempts to quantify the frequency of colors in 

environmental scenes tend to find that low-saturation colors are pervasive, which are typically 

less nameable (Belpaeme & Bleys, 2009; see Zettersten & Lupyan, 2020 for further discussion). 

Moreoever, to the extent to which frequency of exposure and the meaningfulness of the colors 
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used in the high nameability and the low nameability conditions vary, it is likely that this 

difference in experience is closely connected with differential naming experience. If a color 

appears more familiar or more meaningful to an observer, it is likely that this color is verbally 

encoded in the observer’s language. The codability of colors shows surprising variability across 

languages (Majid et al., 2018), suggesting that characteristics such as familiarity, memorability, 

or the meaningfulness of colors are not inherent to the colors themselves – rather, they may be 

products of cultural experience in general, and to be structured by experience with color terms in 

particular (Forder & Lupyan, 2019; Goldstein, Davidoff, & Roberson, 2009; Winawer et al., 

2007). 

Why do Children show Weaker Effects than Adults? 

 When comparing the performance of children to that of adults, two results stand out. 

First, adults show much more accurate learning than children. It is not obvious a priori that 

children should perform dramatically worse than adults on this task; the underlying category 

learning rule is strikingly simple in formal terms, requiring learners to only notice and remember 

a single feature for each category, and a number of adjustments were made to the task to increase 

children’s motivation and provide them with unambiguous feedback. For example, trials were 

repeated until participants responded correctly, features were reinforced after correct responses 

(aliens’ bodies changed colors to match the category stimulus features), and the task was given a 

game-like structure to increase children’s engagement. Nevertheless, adults learned the 

categories far more rapidly. This finding builds on and extends past findings in the 

developmental category learning literature demonstrating that category rules that have a simple 

formalization may still be quite difficult for children and that rule-based category learning 
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undergoes significant developmental change (Huang-Pollock et al., 2011; Mathy et al., 2015; 

Rabi et al., 2015; Roark et al., 2023). 

Second, adults show a substantially larger effect of nameability compared to children. If 

verbal labels are central to learning rule-based categories, one possible explanation to consider is 

that children simply are less familiar with color words. However, this explanation does not fully 

account for our results, because children were highly accurate in naming features belonging to 

the High Nameability condition, yet showed far worse performance in this condition than adults. 

Instead, it appears more likely that adults and children differ in how they approach the task. 

Specifically, adults may approach simple category learning tasks such as these by attempting to 

identify and test simple one- or two-dimensional rules. In contrast, children may approach the 

learning task with weaker priors about the type of solution (Gopnik et al., 2017; Lucas et al., 

2014). 

If children approach the learning task with weaker or more unstable priors about the kind 

of category rule to expect, this may explain in part why the nameability effect emerged only in 

the final block of a given training round among children. Children may first begin the task 

without necessarily crafting rule-based strategies that require representing relevant category 

dimensions, only seeking to generate specific rule-like hypotheses later in the task. Once 

children begin generating hypotheses about category rules, the nameability of category 

dimensions supports the ease with which they can form and test these hypotheses. Future work 

could test this hypothesis by scaffolding children’s ability to generate rule-based hypotheses 

(e.g., by training children that categories will follow a simple rule based on an individual feature 

of each stimulus). If the children show a weaker effect of nameability mainly due to 
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inconsistency in seeking simple category rules, then supporting children’s tendency to form rule-

based hypotheses should magnify the nameability effect.  

Further evidence supporting the idea that children solve the task differently than adults 

lies in children’s and adults’ behavior when tested on novel items after the training phase. The 

Generalization Phase was designed primarily to explore differences in categorization strategy 

between children and adults. The novel item was intended to distinguish participants 

categorizing based on a single color feature versus participants categorizing based on multiple 

color features. This distinction was ultimately not useful for detecting how categorization 

strategies differed between high and low nameability participants. The lack of a nameability 

effect in the Generalization Phase is likely a consequence of participants in the high nameability 

condition learning rule-like strategies involving both single features and multiple features 

(Zettersten & Lupyan, 2020), which may have masked differences in underlying strategies 

between the high and low nameability condition (see S5 in the Supplementary Materials for 

further discussion). However, inspecting response patterns for the novel items in the 

Generalization Phase allowed us to identify a fundamental difference in children’s and adults’ 

category learning. Adult participants showed highly consistent responses, performing at ceiling 

for prototype items and showing consistent sorting behavior for the novel items, with 75-90% of 

participants sorting the item consistently into one category or the other. Children, however, were 

far more variable on both item types (only 29% - 49% of participants sorted items consistently). 

Adults’ sorting patterns suggest they were employing a consistent categorization strategy 

(whether based on single or multiple features), while children’s more varied sorting suggests 

more inconsistency in the use a specific strategy across individuals and within a given testing 

session, in line with other findings suggesting more inconsistent responding among children in 
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perceptual classification tasks (Thompson, 1994). This observation is also consistent with other 

evidence that children can perform better than adults at some types of category learning tasks 

when the underlying category rule does not align with adults’ expectations, because children are 

more likely to use novel strategies (Gopnik et al., 2017; Liquin & Gopnik, 2022; Lucas et al., 

2014). If children approach the current task with fewer expectations about the types of rules that 

specify the category structure, this may explain why they show weaker effects of the nameability 

of individual features compared to adults. 

Implications for the Development of Category Learning 

 The current work has several implications for current theory and future directions in the 

study of category learning and how it develops. First, the current results suggest that category 

complexity depends importantly on past experience (and in particular past language experience) 

with category features. Some categories such as “red things” may be easier to learn not just 

because they are “inherently easy” (Feldman, 2003) or because they are grounded in a “pre-

existing conceptual space” (Li & Gleitman, 2002), but because of a developmental history that 

makes it easier to form and test verbal hypotheses about some features than others. Even 

categories that have identical formal structure can vary in difficulty depending on the 

nameability of underlying stimulus features. A key consideration for future work will be to 

investigate how these findings generalize to other types of features, such as shape. Zettersten & 

Lupyan (2020) found similar effects of nameability for both multiple sets of color and shape 

features, suggesting that effects of verbalizability may apply broadly to many kinds of category 

features – however, it is an open question whether nameability effects among children will 

generalize in a similar fashion. Second, these findings predict individual variation in the ease of 

learning categories depending on language experience. In the current work, we find that children 
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with greater knowledge of words for difficult-to-name colors are more successful at learning 

categories composed of these color features. If language experience can make abstract, rule-

based categories easier to learn, this may also explain why individual differences in vocabulary 

is a surprisingly strong predictor of many later educational outcomes (Bleses et al., 2016). 

Finally, our findings also carry intriguing implications for cross-cultural variation in category 

learning. Languages vary substantially in the degree to which colors  – as well as other basic 

features such as shape – are easily verbalized (Majid et al., 2018). Our findings predict that 

differential experience encoding features of the world into language may systematically shift 

how easy it is to learn novel categories. Future work can therefore build on the current findings 

by investigating the emergence and developmental trajectory of cross-linguistic differences in 

category learning in tandem with cross-linguistic differences in vocabulary. 

Conclusion 

 Learning to categorize items according to rules is a central component of cognitive 

development and is important for many everyday behaviors, including navigating the 

environment and playing games. However, abstracting even simple rule-based categories is not 

trivial for children. Our results reveal one factor that influences the ease with which both adults 

and children form rule-based categories: the nameability of relevant category features. Words 

may help both adults and children learn rule-based categories, though there are likely other 

factors that substantially shift how adults approach the task as compared to children (Gopnik et 

al., 2017; Munakata et al., 2012). These factors may in turn magnify the importance of accessible 

abstract representations across development – the kind delivered by labels. 

  



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 38 

References 

Anderson, E. M., Chang, Y.-J., Hespos, S., & Gentner, D. (2018). Comparison within pairs 

promotes analogical abstraction in three-month-olds. Cognition, 176, 74–86. 

https://doi.org/10.1016/j.cognition.2018.03.008 

Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A 

neuropsychological theory of multiple systems in category learning. Psychological Review, 

105, 442–481. https://doi.org/10.1037/0033-295X.105.3.442 

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed 

random effects for subjects and items. Journal of Memory and Language, 59, 390–412. 

https://doi.org/10.1016/j.jml.2007.12.005 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for 

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 

255–278. https://doi.org/10.1016/j.jml.2012.11.001 

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects 

models using lme4. Journal of Statistical Software, 67, 1–48. 

https://doi.org/10.18637/jss.v067.i01 

Belpaeme, T., & Bleys, J. (2009). The impact of statistical distributions of colours on colour 

category acquisition. Journal of Cognitive Science, 10, 1–20. 

https://doi.org/10.17791/jcs.2009.10.1.1 

Best, C. A., Yim, H., & Sloutsky, V. M. (2013). The cost of selective attention in category 

learning: developmental differences between adults and infants. Journal of Experimental 

Child Psychology, 116, 105–119. https://doi.org/10.1016/j.jecp.2013.05.002 

Bleses, D., Makransky, G., Dale, P. S., Højen, A., & Ari, B. A. (2016). Early productive 

vocabulary predicts academic achievement 10 years later. Applied Psycholinguistics, 37, 

1461–1476. https://doi.org/10.1017/S0142716416000060 

Carey, S. (2011). Précis of The Origin of Concepts. Behavioral and Brain Sciences, 34, 113–

167. https://doi.org/10.1017/S0140525X10000919 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 39 

Casasola, M., Bhagwat, J., & Burke, A. S. (2009). Learning to form a spatial category of tight-fit 

relations: How experience with a label can give a boost. Developmental Psychology, 45, 

711–723. https://doi.org/10.1037/a0015475 

Christie, S., & Gentner, D. (2014). Language helps children succeed on a classic analogy task. 

Cognitive Science, 38, 383–397. https://doi.org/10.1111/cogs.12099 

Clark, A. (1998). Magic words: How language augments human computation. In P. Carruthers & 

J. Boucher (Eds.), Language and Thought: Interdisciplinary Themes (pp. 162–183). 

Cambridge University Press. https://doi.org/10.1017/CBO9780511597909.011 

Couchman, J. J., Coutinho, M. V. C., & Smith, J. D. (2010). Rules and resemblance: Their 

changing balance in the category learning of humans (Homo sapiens) and monkeys (Macaca 

mulatta). Journal of Experimental Psychology. Animal Behavior Processes, 36, 172–183. 

https://doi.org/10.1037/a0016748.Rules 

de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a 

Web browser. Behavior Research Methods, 47, 1–12. https://doi.org/10.3758/s13428-014-

0458-y 

Deng, W. (Sophia), & Sloutsky, V. M. (2016). Selective attention, diffused attention, and the 

development of categorization. Cognitive Psychology, 91, 24–62. 

https://doi.org/10.1016/j.cogpsych.2016.09.002 

Dunn, L. M., & Dunn, D. M. (2007). Peabody picture vocabulary test (4th ed.). Bloomington: 

NCS Pearson. 

Feldman, J. (2003). What is a visual object? Trends in Cognitive Sciences, 7, 252–256. 

https://doi.org/10.1016/S1364-6613(03)00111-6 

Forbes, S. H., & Plunkett, K. (2018). Linguistic and cultural variation in early color word 

learning. Child Development, 91, 28–42. https://doi.org/10.1111/cdev.13164 

Forbes, S. H., & Plunkett, K. (2019). Infants show early comprehension of basic color words. 

Developmental Psychology, 55, 240–249. https://doi.org/10.1037/dev0000609 

Forder, L., & Lupyan, G. (2019). Hearing words changes color perception: Facilitation of color 

discrimination by verbal and visual cues. Journal of Experimental Psychology: General, 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 40 

148, 1105–1123. https://doi.org/10.1037/xge0000560 

Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive 

technology: Evidence from Pirahã language and cognition. Cognition, 108, 819–824. 

https://doi.org/10.1016/j.cognition.2008.04.007 

Gentner, D. (2016). Language as cognitive tool kit: How language supports relational thought. 

American Psychologist, 71, 650–657. https://doi.org/10.1037/amp0000082 

Gentner, D., & Christie, S. (2010). Mutual bootstrapping between language and analogical 

processing. Language and Cognition, 2, 261–283. https://doi.org/10.1515/langcog.2010.011 

Gentner, D., Ozyürek, A., Gürcanli, O., & Goldin-Meadow, S. (2013). Spatial language 

facilitates spatial cognition: Evidence from children who lack language input. Cognition, 

127, 318–330. https://doi.org/10.1016/j.cognition.2013.01.003 

Goldstein, J., Davidoff, J., & Roberson, D. (2009). Knowing color terms enhances recognition: 

Further evidence from English and Himba. Journal of Experimental Child Psychology, 102, 

219–238. https://doi.org/10.1016/j.jecp.2008.06.002 

Gopnik, A., O’Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., Aboody, R., 

Fung, H., & Dahl, R. E. (2017). Changes in cognitive flexibility and hypothesis search 

across human life history from childhood to adolescence to adulthood. Proceedings of the 

National Academy of Sciences, 114, 7892–7899. https://doi.org/10.1073/pnas.1700811114 

Guest, S., & Laar, D. Van. (2002). The effect of name category and discriminability on the 

search characteristics of colour sets. Perception, 31, 445–461. https://doi.org/10.1068/p3134 

Hochmann, J. R., Tuerk, A. S., Sanborn, S., Zhu, R., Long, R., Dempster, M., & Carey, S. 

(2017). Children’s representation of abstract relations in relational/array match-to-sample 

tasks. Cognitive Psychology, 99, 17–43. https://doi.org/10.1016/j.cogpsych.2017.11.001 

Huang-Pollock, C. L., Maddox, W. T., & Karalunas, S. L. (2011). Development of implicit and 

explicit category learning. Journal of Experimental Child Psychology, 109, 321–335. 

https://doi.org/10.1016/j.jecp.2011.02.002 

Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and 

towards logit mixed models. Journal of Memory and Language, 59, 434–446. 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 41 

https://doi.org/10.1016/j.jml.2007.11.007 

Kloos, H., & Sloutsky, V. M. (2008). What’s behind different kinds of kinds: Effects of 

statistical density on learning and representation of categories. Journal of Experimental 

Psychology. General, 137, 52–72. https://doi.org/10.1037/0096-3445.137.1.52 

Kurtz, K. J., Levering, K. R., Stanton, R. D., Romero, J., & Morris, S. N. (2013). Human 

learning of elemental category structures: Revising the classic result of Shepard, Hovland, 

and Jenkins (1961). Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 39, 552–572. https://doi.org/10.1037/a0029178 

Li, P., & Gleitman, Li. (2002). Turning the tables: Language and spatial reasoning. Cognition, 

83, 265–294. https://doi.org/10.1016/S0010-0277(02)00009-4 

Lillard, A. S., Lerner, M. D., Hopkins, E. J., Dore, R. A., Smith, E. D., & Palmquist, C. M. 

(2013). The impact of pretend play on children’s development: A review of the evidence. 

Psychological Bulletin, 139, 1–34. https://doi.org/10.1037/a0029321 

Liquin, E., & Gopnik, A. (2022). Children are more exploratory and learn more than adults in an 

approach-avoid task. Cognition, 218, 104940. 

https://doi.org/10.1016/j.cognition.2021.104940 

Loewenstein, J., & Gentner, D. (2005). Relational language and the development of relational 

mapping. Cognitive Psychology, 50, 315–353. 

https://doi.org/10.1016/j.cogpsych.2004.09.004 

Long, B. L., Fan, J. E., Chai, Z., & Frank, M. C. (2019). Developmental changes in the ability to 

draw distinctive features of object categories. Proceedings of the 41st Annual Conference of 

the Cognitive Science Society. https://doi.org/10.1167/19.10.59b 

Long, B. L., Fan, J. E., & Frank, M. C. (2018). Drawings as a window into developmental 

changes in object representations. Proceedings of the 40th Annual Conference of the 

Cognitive Science Society. 

Lucas, C. G., Bridgers, S., Griffiths, T. L., & Gopnik, A. (2014). When children are better (or at 

least more open-minded) learners than adults: Developmental differences in learning the 

forms of causal relationships. Cognition, 131, 284–299. 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 42 

https://doi.org/10.1016/j.cognition.2013.12.010 

Lupyan, G. (2016). The centrality of language in human cognition. Language Learning, 66, 516–

553. https://doi.org/10.1111/lang.12155 

Lupyan, G., & Casasanto, D. (2015). Meaningless words promote meaningful categorization. 

Language and Cognition, 7, 167–193. https://doi.org/10.1017/langcog.2014.21 

Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is not just for talking: 

Redundant labels facilitate learning of novel categories. Psychological Science, 18, 1077–

1083. https://doi.org/10.1111/j.1467-9280.2007.02028.x 

Lupyan, G., & Zettersten, M. (2021). Does vocabulary help structure the mind? In M. D. Sera & 

M. Koenig (Eds.), Minnesota Symposia on Child Psychology: Human Communication: 

Origins, Mechanisms, and Functions, Volume 40 (pp. 160–199). John Wiley & Sons. 

https://doi.org/https://doi.org/10.1002/9781119684527.ch6 

Majid, A., Roberts, S. G., Cilissen, L., Emmorey, K., Nicodemus, B., O’Grady, L., Woll, B., 

LeLan, B., de Sousa, H., Cansler, B. L., Shayan, S., de Vos, C., Senft, G., Enfield, N. J., 

Razak, R. A., Fedden, S., Tufvesson, S., Dingemanse, M., Ozturk, O., … Levinson, S. C. 

(2018). Differential coding of perception in the world’s languages. Proceedings of the 

National Academy of Sciences, 115, 11369–11376. 

https://doi.org/10.1073/pnas.1720419115 

Mash, C. (2006). Multidimensional shape similarity in the development of visual object 

classification. Journal of Experimental Child Psychology, 95, 128–152. 

https://doi.org/10.1016/j.jecp.2006.04.002 

Mathy, F., Friedman, O., Courenq, B., Laurent, L., & Millot, J.-L. (2015). Rule-based category 

use in preschool children. Journal of Experimental Child Psychology, 131, 1–18. 

https://doi.org/10.1016/j.jecp.2014.10.008 

Miller, H. E., Patterson, R., & Simmering, V. R. (2016). Language supports young children’s use 

of spatial relations to remember locations. Cognition, 150, 170–180. 

https://doi.org/10.1016/j.cognition.2016.02.006 

Minda, J. P., Desroches, A. S., & Church, B. A. (2008). Learning rule-described and non-rule-



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 43 

described categories: A comparison of children and adults. Journal of Experimental 

Psychology. Learning, Memory, and Cognition, 34, 1518–1533. 

https://doi.org/10.1037/a0013355 

Minda, J. P., & Miles, S. J. (2010). The influence of verbal and nonverbal processing on category 

learning. In B. H. Ross (Ed.), Psychology of Learning and Motivation - Advances in 

Research and Theory (Vol. 52, Issue C, pp. 117–162). Academic Press. 

https://doi.org/10.1016/S0079-7421(10)52003-6 

Munakata, Y., Snyder, H. R., & Chatham, C. H. (2012). Developing cognitive control: Three key 

transitions. Current Directions in Psychological Science, 21, 71–77. 

https://doi.org/10.1177/0963721412436807 

Munroe, R. P. (2010). Color Survey Results. In xkcd. 

https://doi.org/https://blog.xkcd.com/2010/05/03/color-survey-results/ 

Overkott, C., Souza, A. S., & Morey, C. C. (2023). The developing impact of verbal labels on 

visual memories in children. Journal of Experimental Psychology: General, 152, 825–838. 

https://doi.org/10.1037/xge0001305 

Perry, L. K., & Lupyan, G. (2014). The role of language in multi-dimensional categorization: 

Evidence from transcranial direct current stimulation and exposure to verbal labels. Brain 

and Language, 135, 66–72. https://doi.org/10.1016/j.bandl.2014.05.005 

Plebanek, D. J., & Sloutsky, V. M. (2017). Costs of selective attention: When children notice 

what adults miss. Psychological Science, 28, 723–732. 

https://doi.org/10.1177/0956797617693005 

R Development Core Team. (2022). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing. https://www.r-project.org/ 

Rabi, R., Miles, S. J., & Minda, J. P. (2015). Learning categories via rules and similarity: 

Comparing adults and children. Journal of Experimental Child Psychology, 131, 149–169. 

https://doi.org/10.1016/j.jecp.2014.10.007 

Rabi, R., & Minda, J. P. (2014). Rule-based category learning in children: The role of age and 

executive functioning. PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0085316 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 44 

Roark, C. L., Lescht, E., Hampton Wray, A., & Chandrasekaran, B. (2023). Auditory and visual 

category learning in children and adults. Developmental Psychology. 

https://doi.org/10.1037/dev0001525 

Saji, N., Imai, M., & Asano, M. (2020). Acquisition of the meaning of the word orange requires 

understanding of the meanings of red, pink, and purple: Constructing a lexicon as a 

connected system. Cognitive Science, 44, e12813. https://doi.org/10.1111/cogs.12813 

Schneider, R. M., Sullivan, J., Marušič, F., Žaucer, R., Biswas, P., Mišmaš, P., Plesničar, V., & 

Barner, D. (2020). Do children use language structure to discover the recursive rules of 

counting? Cognitive Psychology, 117, 101263. 

https://doi.org/10.1016/j.cogpsych.2019.101263 

Schyns, P. G., Goldstone, R. L., & Thibaut, J. P. (1998). The development of features in object 

concepts. The Behavioral and Brain Sciences, 21, 1–54. 

https://doi.org/10.1017/S0140525X98000107 

Schyns, P. G., & Rodet, L. (1997). Categorization creates functional features. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 23, 681–696. 

https://doi.org/10.1037/0278-7393.23.3.681 

Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and memorization of 

classifications. Psychological Monographs: General and Applied, 75, 1–42. 

https://doi.org/10.1037/h0093825 

Simms, N. K., & Gentner, D. (2019). Finding the middle: Spatial language and spatial reasoning. 

Cognitive Development, 50, 177–194. https://doi.org/10.1016/j.cogdev.2019.04.002 

Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688. 

https://doi.org/10.1038/163688a0 

Singley, A. T. M., & Bunge, S. A. (2014). Neurodevelopment of relational reasoning: 

Implications for mathematical pedagogy. Trends in Neuroscience and Education, 3, 33–37. 

https://doi.org/10.1016/j.tine.2014.03.001 

Thompson, L. A. (1994). Dimensional strategies dominate perceptual classification. Child 

Development, 65, 1627–1645. 



NAMEABILITY SUPPORTS RULE-BASED CATEGORY LEARNING 45 

Visser, I., & Raijmakers, M. E. J. (2012). Developing representations of compound stimuli. 

Frontiers in Psychology, 3, 1–11. https://doi.org/10.3389/fpsyg.2012.00073 

Wagner, K., Dobkins, K., & Barner, D. (2013). Slow mapping: Color word learning as a gradual 

inductive process. Cognition, 127, 307–317. https://doi.org/10.1016/j.cognition.2013.01.010 

Wagner, K., Jergens, J., & Barner, D. (2018). Partial color word comprehension precedes 

production. Language Learning and Development, 14, 241–261. 

https://doi.org/10.1080/15475441.2018.1445531 

Walker, C. M., & Gopnik, A. (2014). Toddlers infer higher-order relational principles in causal 

learning. Psychological Science, 25, 161–169. https://doi.org/10.1177/0956797613502983 

Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian 

blues reveal effects of language on color discrimination. Proceedings of the National 

Academy of Sciences of the United States of America, 104, 7780–7785. 

https://doi.org/10.1073/pnas.0701644104 

Yurovsky, D., Wagner, K., Barner, D., & Frank, M. C. (2015). Signatures of domain-general 

categorization mechanisms in color word learning. Proceedings of the 37th Annual 

Conference of the Cognitive Science Society, 2775–2780. 

Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and 

adolescence: Development and plasticity. Child Development Perspectives, 6, 354–360. 

https://doi.org/10.1111/j.1750-8606.2012.00246.x 

Zettersten, M., & Lupyan, G. (2020). Finding categories through words: More nameable features 

improve category learning. Cognition, 196, 104135. 

https://doi.org/10.1016/j.cognition.2019.104135 

Zettersten, M., Suffill, E., & Lupyan, G. (2020). Nameability predicts subjective and objective 

measures of visual similarity. Proceedings of the 42nd Annual Conference of the Cognitive 

Science Society. 
 



1 

Supplementary Materials 

S1: Additional Details on Color Feature Selection 

The color features used in the current experiment were identical to those used in 

Zettersten & Lupyan (2020), Experiment 1B. Below, we describe the procedure originally used 

to identify these colors based on data from a large-scale online study of color naming (Munroe, 

2010). We reproduce some of the methods descriptions from Zettersten & Lupyan (2020) in 

describing the selection procedure. The 12 color features (6 with high nameability; 6 with low 

nameability) for the 4 prototype stimuli (2 with high nameability, 2 with low nameability; each 

composed of three color features) were selected from among the colors with high nameability 

and the colors with low nameability (as quantified using Simpson’s diversity index). As 

described in Zettersten & Lupyan (2020), the goal was to select prototype features such that the 

three color features of each prototype stimulus had approximately equivalent pairwise CIE-LAB 

distances as quantified via ΔE2000 (Sharma et al., 2005). Sets of high nameability and low 

nameability colors were equated on CIE-LAB distances to ensure that the highly nameable color 

features and the low nameability color features were approximately equally easy to discriminate 

from one another. The resulting set of prototype images are aligned on between-color perceptual 

discriminability according to the following constraints: each of the three colors are clearly 

discriminable from the remaining two colors (ΔE2000 > 20) and the average ΔE2000 values for 

the three color features of each prototype stimulus lie between 35 and 45. The average within-

prototype feature ΔE2000 discriminability was similar for high nameability colors (M = 39.7, SD 

= 11.6) and for low nameability colors (M= 36.5, SD = 9.5), t(10) = .52, p = .61. 
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S2. Color Norming Task  

S2.1. Trial Illustration 

 

Figure S1. Example trial in the speeded match-to-sample task 

 

 

 

 

 

 

 

Find the picture that matches the top 
one as fast as you can. 
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S2.2. Average Color Reaction Times 

 
Figure S2. Average reaction times in the color norming task for children  

 

Figure S3. Average reaction times in the color norming task for adults 
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S2.3. Average Pairwise Discriminability 

Supplementary Table 1.  
Perceptual discriminability values from the color norming task and Zettersten & Lupyan (2020) 

RGB Pair Color Pair Modal Names Name-
ability ΔE2000 

Average 
RT (in ms)  

- 
Zettersten 
& Lupyan 

(2020) 

Average 
RT (in ms) 

- 
Norming 

Task, 
Children 

Average 
RT (in ms) 

- 
Norming 

Task, 
Adults 

(30, 90, 210) - (120, 80, 40) 
 

blue - brown high 46 576 2047 698 

(30, 90, 210) - (250, 120, 30) 
 

blue - orange high 56 546 1797 666 

(30, 90, 210) - (130, 30, 180) 
 

blue - purple high 21 553 2105 705 

(30, 90, 210) - (220, 20, 0) 
 

blue - red high 48 569 1911 672 

(30, 90, 210) - (250, 240, 0) 
 

blue - yellow high 83 544 1981 702 

(120, 80, 40) - (250, 120, 30) 
 

brown - orange high 31 569 1844 699 

(120, 80, 40) - (130, 30, 180) 
 

brown - purple high 46 596 2067 706 

(120, 80, 40) - (220, 20, 0) 
 

brown - red high 24 578 2133 694 

(120, 80, 40) - (250, 240, 0) 
 

brown - yellow high 52 569 1945 721 

(250, 120, 30) - (130, 30, 180) 
 

orange - purple high 58 579 2017 695 

(250, 120, 30) - (220, 20, 0) 
 

orange - red high 21 607 2108 737 

(250, 120, 30) - (250, 240, 0) 
 

orange - yellow high 42 579 2064 705 

(130, 30, 180) - (220, 20, 0) 
 

purple - red high 44 597 1707 699 

(130, 30, 180) - (250, 240, 0) 
 

purple - yellow high 93 562 1710 697 

(220, 20, 0) - (250, 240, 0) 
 

red - yellow high 62 583 1899 664 

(70, 100, 90) - (200, 100, 70) 
 

grey green - brown low 40 549 2160 703 

(70, 100, 90) - (170, 160, 40) 
 

grey green - mustard low 36 583 1921 713 

(70, 100, 90) - (220, 240, 150) 
 

grey green - pale green low 47 552 2042 675 

(70, 100, 90) - (200, 170, 170) 
 

grey green - grey low 43 600 2165 716 

(70, 100, 90) - (150, 200, 180) 
 

grey green - green low 34 592 1896 709 

(200, 100, 70) - (170, 160, 40) 
 

brown - mustard low 37 538 2021 696 

(200, 100, 70) - (220, 240, 150) 
 

brown - pale green low 50 558 1946 725 

(200, 100, 70) - (200, 170, 170) 
 

brown - grey low 24 582 2008 733 

(200, 100, 70) - (150, 200, 180) 
 

brown - green low 47 544 1917 680 

(170, 160, 40) - (220, 240, 150) 
 

mustard - pale green low 21 643 1954 764 

(170, 160, 40) - (200, 170, 170) 
 

mustard - grey low 32 588 2025 687 

(170, 160, 40) - (150, 200, 180) 
 

mustard - green low 28 587 1916 698 

(220, 240, 150) - (200, 170, 170) 
 

pale green - grey low 35 552 2055 706 

(220, 240, 150) - (150, 200, 180) 
 

pale green - green low 21 589 2108 700 

(200, 170, 170) - (150, 200, 180) 
 

grey - green low 35 584 2026 716 
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S2.4. Correlations between Behavioral Discriminability Norms and CIE-LAB distances 

 

Figure S4. Correlation between pairwise average reaction times in the color norming task for 

children and ΔE2000 

 

Figure S5. Correlation between pairwise average reaction times in the color norming task for 

adults and ΔE2000 
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Figure S6. Correlation between pairwise average reaction times in the color norming task for 

adults and discriminability norms from Zettersten & Lupyan (2020) 

S3. Additional Modeling Details – Training Phase 

S3.1. Comparing children and adults  

To compare category learning accuracy during the Training Phase for children and adults, 

we fit a logistic mixed-effects model predicting trial-by-trial accuracy from Condition (centered; 

Low Nameability = -0.5, High Nameability = 0.5), Block Number (centered), Experiment Round 

(centered), Age Group (children = -0.5; adults = 0.5), and all possible interactions. We included 

the maximal by-subject random effects structure, including a by-subject random intercept and a 

by-subject random slope for Block Number, Experiment Round, and their interaction. Table S2 

provides an overview of the model coefficient estimates. 
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Supplementary Table 2. Estimates for the model comparing children and adults 

Coefficient Estimate SE z p 

Intercept 2.11 0.09 23.09 <.001 

Condition 0.93 0.17 5.38 <.001 

Block Number 0.55 0.07 7.86 <.001 

Round 0.79 0.12 6.42 <.001 

Age Group 2.32 0.18 13.18 <.001 

Condition * Block Number 0.37 0.12 3.18 .001 

Condition * Round 0.18 0.21 0.84 .40 

Condition * Age Group 1.28 0.34 3.73 <.001 

Block Number * Round -0.36 0.13 -2.65 .008 

Block Number * Age Group 0.78 0.12 6.37 <.001 

Round * Age Group 0.68 0.22 3.04 .002 

Condition * Block Number * Round -0.17 0.23 -0.74 .46 

Condition * Block Number * Age Group 0.28 0.24 1.19 .24 

Condition * Round * Age Group 0.22 0.43 0.52 .60 

Block Number * Round * Age Group -0.25 0.24 -1.06 .29 

Condition * Block Number * Round * Age Group -0.09 0.45 -0.19 .85 

 

S3.2. Interaction with child age  

To investigate whether category learning accuracy during the Training Phase changed 

across age for children, we fit a logistic mixed-effects model predicting trial-by-trial accuracy 

from Condition (centered; Low Nameability = -0.5, High Nameability = 0.5), Block Number 

(centered), Experiment Round (centered), Age (centered), and all possible interactions. We 

included the maximal by-subject random effects structure, including a by-subject random 
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intercept and a by-subject random slope for Block Number, Experiment Round, and their 

interaction. Table S3 provides an overview of the model coefficient estimates. 

Supplementary Table 3. Estimates for the model including the interaction with child age 

Coefficient Estimate SE z p 

Intercept 0.97 0.09 11.18 <.001 

Condition 0.25 0.17 1.47 .14 

Block Number 0.13 0.05 2.51 .01 

Round 0.48 0.12 4.84 <.001 

Age 0.04 0.01 3.35 <.001 

Condition * Block Number 0.24 0.09 2.58 .01 

Condition * Round 0.05 0.19 0.28 .78 

Condition * Age 0.004 0.02 0.19 .85 

Block Number * Round -0.26 0.10 -2.69 .007 

Block Number * Age 0.01 0.01 1.32 .19 

Round * Age 0.02 0.01 1.65 .10 

Condition * Block Number * Round -0.14 0.18 -0.80 .42 

Condition * Block Number * Age 0.003 0.01 0.20 .84 

Condition * Round * Age 0.01 0.03 0.54 .59 

Block Number * Round * Age -0.01 0.01 -90 .37 

Condition * Block Number * Round * Age -0.02 0.02 -0.93 .35 

 

S4. Additional Modeling Details - Relation between Category Learning and Color Word 

Knowledge 

S4.1. Color comprehension and category learning: Interaction with child age 

We also explored whether the interaction between low nameability color comprehension and 

condition in predicting category learning accuracy depended on child age. To test this question, 
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we fit a linear model predicting children’s category learning accuracy, for low nameability color 

comprehension, condition (centered; high=0.5, low=-0.5), child age (centered), and all 

interactions between these three predictors, while also controlling for children’s vocabulary test 

score. Table S4 provides an overview of the model coefficients. As in the main model (not 

including age), there was a significant interaction between low nameability color comprehension 

and condition, b = -0.05, 95% CI = [-0.11, -0.01,], t(93) = -1.99, p = .0499. 

Supplementary Table 4. Estimates for the three-way interaction model predicting category 
learning accuracy from low nameability color comprehension score, condition, and age. 

Coefficient Estimate SE t p 

Intercept 0.65 0.09 7.47 <.001 

Condition 0.14 0.05 2.72 .008 

Low Nameability Color Comp. 0.01 0.01 1.09 .28 

Age 0.004 0.004 1.21 .23 

Vocabulary Score 0.01 0.11 0.13 .90 

Condition * Low Nameability Color Comp. -0.05 0.03 -1.99 .0499 

Condition * Age 0.007 0.007 1.06 .29 

Low Nameability Color Comp. * Age 0.001 0.002 0.52 .61 

Condition * Low Nameability Color Comp. * Age -0.003 0.003 -0.98 .33 
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S5. Category Learning Accuracy – Generalization Phase 

S5.1. Generalization Accuracy 

 

Figure S7. Generalization accuracy by condition (high vs. low) and stimulus type (prototype vs. 
novel) for (A) adults and (B) children. Dashed horizonal line indicates chance-level responding. 
 
S5.2. Sorting Consistency 

We also investigated the proportion of participants who sorted the novel generalization 

exemplars into one category or the other, i.e. consistently according to the 100% predictive color 

feature, or consistently in accordance with the 75% predictive color features. Among adult 

participants, 88.9% of participants in the High Nameability condition (40 of 45) and 75.6% of 

participants in the Low Nameability condition (34 of 45) consistently sorted the novel items into 

one category or the other (no significant difference between conditions, 𝜒2(1) = 1.90, p = .17). 

Among children, participants in the High Nameability condition (24 of 49; 49.0%) consistently 

sorted the novel generalization exemplars into one category or the other at a marginally higher 

rate than participants in the Low Nameability condition (14 of 48; 29.2%), 𝜒2(1) = 3.21, p = .07. 

We also compared adults and children in the consistency with which they sorted novel items into 
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one category or the other. Adults were far more likely to consistently assign a given 2-color 

difference item to a given category in both the High Nameability condition (𝜒2(1) = 15.41, p < 

.001) and the Low Nameability condition (𝜒2(1) = 18.20, p < .001). 

S5.3. Relation between Generalization Phase Accuracy and Color Word Knowledge 

In order to investigate the effect of low nameability color word comprehension on 

generalization accuracy, we fit linear models, separately for adult participants and for child 

participants, predicting accuracy during the generalization phase from the interaction between 

low nameability color comprehension and condition. For both adult participants and child 

participants, there was no significant interaction between comprehension of difficult-to-name 

colors and condition in predicting accuracy in the generalization phase (adults: b = -0.16, t(86)  = 

-0.81, p = .42; children: b = -0.27, t(93)  = -1.06, p = .29). 

S5.4. Why are there no effects of nameability during the Generalization Phase? 

Unlike in the training phase, there was no evidence for an effect of nameability on 

generalization accuracy, among adults or among children. There was a tendency in both children 

and adults to sort the novel items more consistently as belonging to one category or the other 

(i.e., to have a generalization “accuracy” of 0 or 1) in the High Nameability condition (adults: 

89% of participants; children: 49% of participants) than in the Low Nameability condition 

(adults: 76% of participants; children: 29% of participants), but this tendency did not reach 

statistical significance. The most striking difference is that adults performed far more accurately 

on the task than children: adults performed at ceiling on the prototype stimuli by the end of the 

category phase, while children’s accuracy was far lower (between 65-70%). Adults also sorted 

novel items far more consistently into one category or the other than child participants. This 
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suggests that adults employed consistent strategies while performing the task, while children’s 

strategies appear to be more mixed or inconsistent. 

One possible explanation for the lack of a nameability effect is that participants in the 

high nameability condition and the low nameability condition may have sorted the novel items 

similarly, but varied in their underlying strategies. In Zettersten & Lupyan (2020), adult 

participants were more likely to self-report using multiple feature-based strategy in the high 

nameability condition than in the low nameability condition (“Circles with at least two of yellow, 

orange, or brown always went on the left side.”), but marginally more likely to use a holistic 

strategy in the low nameability condition (“Warmer colors went to the left; cooler colors went to 

the right”); participants reported using a single-color strategy at similar rates in both conditions 

by the end of the task (see Supplementary Materials S2 in Zettersten & Lupyan, 2020). The 

novel items were designed to be diagnostic of whether participants relied on a single feature or 

multiple features in making categorization decisions. The key issue is that both a holistic strategy 

and a category rule based on multiple color features will lead to similar categorization decisions 

for the novel item, which may mask differences between high and low nameability participants. 

In other words, generalization “accuracy” may appear similar for high nameability and low 

nameability participants despite underlying differences in whether participants are using more 

feature-based category rules or more holistic evaluations of the stimuli. Future work could 

further investigate this possibility by designing additional generalization items that more 

effectively disentangle different underlying categorization strategies among children and adults. 
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S6. Overview of the Color Naming and Color Comprehension Results 

Supplementary Table 5 
Proportion of adults’ and children’s correct word knowledge for the color stimuli 

RGB Color Target 
label condition 

Comp. 
Accuracy 
Children 

Comp. 
Accuracy 

Adults 

Child Color 
Naming: 

Simpson’s 
Diversity 

Adult Color 
Naming: 

Simpson’s 
Diversity 

(30, 90, 210) 

 

blue high 1.0 1.0 1.0 1.0 

(250, 120, 30) 

 

orange high 0.99 1.0 1.0 1.0 

(220, 20, 0) 

 

red high 1.0 1.0 0.98 1.0 

(250, 240, 0) 

 

yellow high 0.99 1.0 0.86 1.0 

(120, 80, 40) 

 

brown high 1.0 1.0 1.0 1.0 

(130, 30, 180) 

 

purple high 1.0 1.0 0.94 0.98 

(170,160,40) 

 

chartreuse low 0.15 0.21 0.32 0.20 

(200, 170, 170) 

 

mauve low 0.46 0.74 0.15 0.10 

(200, 100, 70) 

 

sienna low 0.12 0.41 0.18 0.18 

(70, 100, 90) 

 

teal low 0.11 0.23 0.16 0.16 

(220, 240, 150) 

 

honeydew low 0.32 0.72 0.42 0.30 

(150, 200, 180) 

 

turquoise low 0.39 0.66 0.20 0.28 
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S7. Supplementary Results: Relation between Category Learning and Color Word 

Knowledge 

S7.1. Color Naming Description Length and Category Learning 

 In addition to participants’ color comprehension for low nameability words, we explored 

a further metric of individual differences in color word knowledge: the description length of 

participants’ color naming responses. We computed the average character length of each 

participant’s color naming responses for high and low nameability colors. We then fit a linear 

model (separately for adults and for children) predicting category learning accuracy from low 

nameability color description length, condition, and their interaction. There was no interaction 

between low nameability color description length and condition for adults (b = -0.01, t(86) = -

1.38, p = .17) or for children  (b = -0.003, t(93) = -0.27, p = .79). There was also no effect of low 

nameability color description length on category learning in the low nameability condition for 

adults (b = 0.01, t(86) = 1.56, p = .12) or children (b = 0.004, t(93) = 0.59, p = .56). 
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